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Scattering from an Arbitrarily Located
Off-Axis Inhomogeneity in a
Step-Index Optical Fiber

AHMAD SAFAAI-JAZI AND GAR LAM YIP, SENIOR MEMBER, IEEE

Abstract—An exact analysis using the Green’s function formulation of
an arbitrarily oriented off-axis dipole radiating into a dielectric rod wave-
guide is carried out. The method of analysis involves expressing the fields
and the current source in a Fourier integral in the z-direction and a
Fourier series in the ¢-direction in a cylindrical coordinate system (p, ¢, z).
The practical significance of this analysis, in particular with regard to its
applications to the problem of scattering from an arbitrarily located
inhomogeneity in a step-index optical fiber, is presented.

I. INTRODUCTION

IELECTRIC optical waveguides are receiving ever
increasing attention recently. Although much effort
has been devoted to further developing the optical fiber
theory in recent years, there still remain certain problems
which deserve more detailed studies. One problem of
considerable importance is the excitation of guided modes
and radiation by infinitesimal dipole sources in cylindri-
cally stratified dielectric waveguides. A rigorous mathe-
matical treatment of the problem necessitates solving an
inhomogeneous wave equation.
A comprehensive treatment of excitation problems in-
volving point and line sources in the presence of dielectric
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slab waveguides can be found in [1] and [2]. A similar
problem in the case of cylindrical dielectric waveguides
involves a much greater degree of mathematical complex-
ity, and, except for certain special cases, a general solution
to the excitation problem has not been available so far.
Duncan [3] and Brown and Stachera [4] have studied the
excitation of the TMj;, mode on a dielectric rod by a
magnetic current ring, while Yip [5] investigated the ex-
citation of the HE;, mode by a transversely oriented
infinitesimal dipole on the axis of a rod.

The treatment of an arbitrarily oriented off-axis dipole
is somewhat complicated, especially when the radiation
fields are to be determined. Fortunately, the surface-wave
fields can be evaluated by employing the Lorentz re-
ciprocity theorem involving the use of the orthogonality
relations in the modal fields without solving the entire
excitation problem. The analysis was first carried out by
Goubau [6] and is also outlined in [7]. This method has
been used to study the mode conversion due to scattering
by localized inhomogeneities in optical fibers [8] and [9].

This method, while successful in handling the guided
modes, does not yield any information about the radiation
fields which are also excited by a scatterer. For wave-
guides with small dielectric difference between the core
and the cladding, the radiation loss due to localized im-
purities can be approximated by the power radiated from
an equivalent dipole into an infinite homogeneous
medium with a permittivity equal to that of the medium
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Fig. 1. Geometry of the problem. (a) The dielectric rod and the point

dipole. (b) Current components in the dipole.

surrounding the dipole [9]. But this approximation cannot
take into consideration the boundary between the core
and the cladding. Moreover, the calculated power be-
comes less and less accurate as the dielectric difference
between the core and the cladding increases.

The aim of this paper is to present a rigorous Green’s
function analysis of an off-axis and arbitrarily oriented
dipole in a two-layer cylindrical dielectric waveguide. The
treatment allows both the radiation fields and guided
modes to be examined. The method of analysis involves a
Fourier transform technique in conjunction with a coordi-
nate transformation and the application of the Graf’s
formula [10]. Solutions for the far zone radiation fields
and surface-wave fields for all modes and the correspond-
ing powers are obtained. These solutions are then used to
study, in detail, radiation and mode conversion losses due
to scattering from a discrete and randomly situated
scatterer in a dielectric-rod optical waveguide in which the
dominant HE,, mode propagates.

II. FORMULATION OF THE PROBLEM

Consider a cylindrical dielectric waveguide composed
of a core with a radius p, and an infinite cladding as
iltustrated in Fig. 1(a). The core and cladding are char-
acterized by permittivities €, =€, and €,=¢q€, and
permeabilities ;= pop,, and p,= pgp,,, respectively. A
cylindrical coordinate system (p,¢,z) with the z-axis
coinciding with the axis of the core is chosen. A point
electric dipole with an arbitrary orientation is placed at
(po» Pg» Z)- The time variation is assumed to be of the form
exp(— jwt) which will be omitted throughout the analysis.
Without loss of generality, z, is set to zero. The current
density in the dipole is expressed as a three-dimensional
delta function given by

fl=(pr’o+J¢<‘f;0+szo)6(B"ﬁo) (1a)
where
o oy | 8(p—po)O(d=10)0(z)/p, Po>0
6= { s NS

and py, by, and Z, are unit vectors at pg, ¢o, and z,, along
the radial, azimuthal, and axial directions, respectively, as
indicated in Fig. 1 (b). Decomposing J, along some arbi-
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Fig. 2, Transformation of coordinates in the z=0 plane.

trary directions p and 35 yields
Ji={ [J, cos(¢— o) + J,, sin(p— ) |5+ [ J,, cos(¢— )
—J,sin(¢— ) ]‘2"" sz} 8(—p0)- (2)

Let us assume, for the time being, that p,<p;; i.e., the
dipole is in the core region. The wave equations can be
written as

7 —VxJ
V2 + k3 "\ { 2 J
( ollﬂfrl)[ E ] —j(k0 pd + VV.J/k0€rl)’

(3a)

—>

(V2+k(z)y‘r2€r2)[ IE—1'1|=0’ P>p1 (3b)

where E=(e)'/%E,, H=(po)/*H,, and J=(pp)"/¥, are
the normalized fields and current density. The case p,>
P, that is when the dipole is in the cladding region, will be
discussed later. The technique used for solving the inho-
mogeneous wave (3a) involves the following steps: 1) a
coordinate transformation in the z =0 plane such that the
new origin is at (py, ¢, 0) and the new x-axis; i.e., x"-axis
makes an angle ¢, with the old x-axis as shown in Fig. 2.
2) transformation of the fields and the current density by
means of a Fourier transform integral from the z domain
into the 8 domain, 8= B/k, being the normalized axial
propagation constant.

Following step 1), the new transverse coordinates in
terms of the old ones are given by

o'=[p?+p3—2ppocos(d— o) |/

O =0—Pyt o, =7, (4)

The current density J in the new coordinate system be-

comes

.7=(,u0)1/2[(Jp cos¢’ +J,,sing)p’ +(J,cos¢' —J, sin¢’)e’
+7,2]8()8(z) /270", (5)

It should be noted that (3a) and (3b), as they stand, are
valid in the new coordinate system too. By means of a
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Fourier transform integral the fields and the current den-
sity components can be expressed in the following form:

Fp 6, B)= [ flol.¢',2)exp(—jkoBz) e (6)

Using (5) and (6) in (3a), the following wave equations for
the transformed axial components of the fields are ob-
tained

(Vf+k%) Hzl(p 7‘15 7:8)

Ezl(p,>¢') E)
(1) ? d [8(p) . o
~ —Ta dp/l: p/ :|m=;’—lm(‘]p .]m]¢)exp(jm¢)
1/2) ik, _6(9/) B
(10) { 2mkye, 0 * 4me,,
d_[ 8(o) . o
'";‘7[7—]mg_l(%—]mh)exp(ﬂnw}

™

where k?=k3(u, ¢, — B?). The corresponding equations
for H_,(p’,¢',8) and k,,(o’,¢’, B), the axial components in
the cladding region, are obtained from (7) by setting the
right hand side expressions to zero and replacing the
subscript 1 by 2 in all relevant terms. The particular
solutions to the inhomogeneous equations in (7) can be
written

Hfl(P/:¢/>E) =T, 2

(3)
me=1 -1
(J,—jmJ )Y, (ko )exp(jm¢’)  (8a)
Efl(Pl"?qu) = To[ — (S k1/ kog1) Yo kip')

+ X

m=1,—1

(I, —imJ,)- Y, (kip)exp(jm¢’) | (8b)

(ij—/zerl)

where T,=jk,(110)"/?/4 and J, and Y, are the Bessel
functions of the first and second kinds, respectively. It is
now appropriate to write these solutions in terms of the
old coordinates p and ¢. In doing so, we make use of the
Graf’s formula [10] expressed as

©

exp(jre,) Z,(kp") = n=2_ - 2, ,(k10), (K po)exp(jnS)
)

where Z,=J,, Y,, H®, or H® and p, p,, and p’ [=(p?+
Pa — 2ppycos )2 with |p|>|po|] form a triangle with Q=
¢—¢, as seen in Fig. 2. Hence, with the help of (9) and
taking into account the solutions to the homogeneous

equations in (7), the following results for the complete
solutions are obtained.

Ezl(pa¢aﬁ_) = n=§iw [(Rn + anI)Jn(klp)]Fn

Hzl(p9¢>B_) = n=§;w [(s,+ b, ), (kip) ] F,

0<p<p, (10a)
Ezl(ps¢’B_)= ___Z_ [Rr: Yn(klp)+an1Jn(klp):'Fn
Hzl(p’(b’g) = n=2—00 [Sr: Yn(klp) + bnlJn(klp)]Fn
po<p<p; (10b)
Ezz(P, ¢’7:E) = _2_ anZHr(ll)(kZP)Fn
_ n—ooOO H Y > Py (IOC)
sz(p) ¢aB ) = _2_ anHr(ll)(kZP)Fn

where k,=ko( 1,6, ~ B)"/? and F,=exp[jn(¢—dy)]. In
(10), the coefficients R,, S,, R, S, are associated with solu-
tions to the inhomogeneous equations, whereas the un-
known coefficients a,;, b,,, a,,, and b,, can be determined
by imposing the boundary conditions at the core—clad-
ding interface. For brevity, detailed expressions for these

coefficients are not given here, but can be found in [11].

111

The actual field components are obtained by Fourier
transforming the fields in the 8 domain according to

EvaLuATION OF AcTUAL FIELDS

k 0 — - -
Sost,2) =52 [ Fp0, B )exp(skoz)dB (1)

where f represents a component of the electric or magnetic
field in the z domain and F is the corresponding compo-
nent in the B domain. The evaluation of the integral in
(11) 1s performed by means of a contour integration. In
doing so, the analyticity of the integrands involved must
be first investigated. In other words, the singularities of
the integrands, namely poles and branch points should be
determined. An examination of field coefficients in (10)
reveals that the poles are the real roots of the characteris-
tic equation A( 8)=0. To identify the branch points, let us
first consider the variable &, which appears in the argu-
ment of the Hankel function. k, is clearly multivalued in
the neighborhood of 8= + B, where B, =( p,,¢,,)'/% More-
over, the series expansion of the Hankel function has a
logarithmic term, and is thus singular at k,=0. Conse-
quently, 8= =+ E, are branch points from which the cuts
are taken. The possibility of branch points at B=
+(p,€,)"/? may be questioned because of the presence of
the multivalued variable &, in the arguments of the Bessel
function J, and Y, and the logarithmic singularity in-
herent in Y,. It can be proved [11] that if k, is replaced by
ki exp(jm), the integrands remain unchanged. Further,



SAFAAJ-JAZI AND YIP: SCATTERING FROM AN INHOMOGENEITY

their series expansions are free from any logarithmic sin-
gularity. Hence, 8= *(y,¢,)"/* are not branch points.
Then, the contour of integration, as shown in Fig. 3, is so
constructed that the singularities are avoided. By the
residue theorem

fw = _fc _fc +277 >, Residues.
o0 1 2

(12)

In (12), the integral along C, vanishes as the radius of C,
approaches infinity. The integral along C,, the branch cut,
contributes to the radiation fields, while the sum of the
residues which corresponds to the contribution of the
poles accounts for the surface-wave fields.

A. Radiation Fields

The radiation fields are obtained by evaluating the
branch cut integral in (12). The exact evaluation of this
integral is a formidable task. In the far zone where p and z
are sufficiently large, however, an asymptotic evaluation
of the integral is possible by means of a saddle point
method of integration [1] and [3]. To facilitate the asymp-
totic evaluation of the branch cut integral, it is desirable
to introduce the transformation S=,.coss. It is further
convenient to utilize the spherical coordinates (r,¢,8)
where § is measured from the z-axis so that p=rsin8 and
z=rcosf. Applying the above mentioned transformation,
using the large argument approximation of the Hankel
function in (10c) and (12), and deforming the contour C,
in the 7 plane which is transformed from C, in the 8
plane, into a steepest descent path passing through the
saddle point at 7=4, one obtains,

E¢(r’¢’0) St . ("Lr2/€r2)l/2
- 3
H¢(r’¢a0) } " jI: _(erz/ﬂrz)l/z

=—00

bn2 ( 9 ) _1_
an2(0 ) Sin 0

exp (JkoB, )
wr

rexp[ jn (9—Po—7/2)]

(13)
(14a)
(14b)

Eﬂ(r’ ¢a0) = ( ’J‘rz/erz)]/z'H¢(ra 4)10)
HO(r>¢:0) = (ErZ/AurZ)l/z.Ed;(r"i)’a)'

In (13), a,,(9) and b,,(#) are obtained from q,, and b,, in
(10) replacing 8 by B,cos#.

The radiation power is determined by integrating the
real part of one-half of the radial component of the
complex Poynting vector over a sphere of an arbitrarily
large radius.

1 20 ;7
P=—— P(r,¢,0)r*sinfdodd (152)
2( Auofo)l/2 fo fo

where
P(r,¢,0)=Re[ Ey(r,,0) H}(r,$,0)

- ¢(ra¢‘30)H;(r’¢”0)]' (ISb)

Substituting for E,, H,, E,, and H, from (13) and (14),
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Fig. 3. Contour of integration in the complex § plane.

the radiated power is obtained, after some simplifications,
as

4 [+ —
P=———3 [T, ealla;P+Ia P +la? )
w ”4060 n=0 0

. dp
+ o (|67 P + 1B P+ b2 ) | E—Z_T2 (16a)
where
a,=To(a} +at+a?)
by =To(b7 + b+ b?) (16b)

a, and b, are factors contained in a,,,6,,,4,5,5,,, K,=1/2
for n=0, K,=1 for n>0, T,=A,To/H"(w), Ay=
=2/[7mx*,()A(B)}, x=k,p,, and w=k,p,. The detailed
expressions for the terms in (16b) can again be found in
[11]. The infinite series in (16a) is absolutely convergent,
since the ratio of the (n+ 1)th term to the snth one goes to
zero as n approaches infinity.

The radiation pattern may be obtained from |P(r,¢,8)),
given by (15b). In general, when all current components
J,, J,, and J,, are present and p,>0, there is no symmetry
in the radiation pattern. For special cases such as an
on-axis dipole (p,=0), to be discussed later, a great deal
of simplification occurs in both radiated power and radia-
tion pattern.

B. Surface-Wave Fields

For propagation in the positive z-direction, the surface-
wave fields for a particular mode having an azimuthal
number »n are obtained by evaluating the residues at the
pole corresponding to the mode concerned. Hence, from
(10) and with the help of (11) and (12), the following
results are obtained. For n> 1

Ezl,n(p’ ¢"Z) = Iz_n‘,n(klp)}?'n
Hzl,n(p’ ¢?Z) =.]‘:1—nﬂl‘]n(kp)ivn
Ez2,n(p: ¢7 Z) =‘Z;Q2Kn(|k2|p)F_vn
Hzl,n(p’ 4’72) =J’InQ3Kn(|k2|p)i‘n

0<p<p, (172)

p>p; (17b)
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and for n=0
l!’zl,o(Pa‘i’aZ)=A—0Jo(k1p)ﬁo (18)
Voo o0 95 2) = ALKy kolp) Fo
where
y = E,, ifA(B)=B,=¢€;m —€om,=0, TM modes
’ H, if A(,E)=A2=Hr1771_.ur2’72=0’ TE modes

In (17) and (18) for n=0,*+1, *2,---
A== j2koay /[ 7T )N (B,) ]

F, =exp[jn(¢—¢0) =Jjko B—nz]
B=8,

m=J,(x)/%J,(x)

ny=H,(w)/ WH (W)

Q)=B,/A4,, Q=J,(x)/K,(|w]) and £, =0,

A’(@)=;%A(ﬁ)

A,=B,=nB(1/x*—1/w?). (19)
For TE modes, A, is given by Ay = 2kobo/
[wx2Z(x)A'(By)] Since B,>pB, for guided modes, &, in
(17) and (18) has been replaced by jk,.

At a given frequency, only a finite number of modes are
excited. These are the modes whose cutoff frequencies are
lower than the operating frequency. The dominant HE,
mode is usually the first mode to be excited, because it
has a zero cutoff frequency. Further, as long as the
normalized frequency, defined as V=~kyp,(€,, —€,)"/? is
less than 2.405, the HE,; mode is the only surface-wave
mode present except for an axially oriented on-axis dipole
which excites the circularly symmetric modes only. For
V >2.405, the HE,,, TM,,, and TE,; modes also begin to
be excited. The number of excitable modes is determined
by the cutoff conditions and the operating frequency. A
detailed analysis of the cutoff conditions for a dielectric
rod is given by Marcuse [12].

The total power carried by a guided mode is the sum of
the powers in the positive and the negative z directions. It
should be noted that the two powers are not, in general,
equal.

P,=|P(B,)I+|P(—B,) (20a)
where
P(B)=——— [ [Re[ E(p.6.2)x H*(p,,2)]-2d5.
2( o€0)
(20b)

The integration is performed over the entire z=0 plane.
Substituting (17) and (18) in (20), the total surface-wave

power is obtained as

P =

n > 1, hybrid modes
n=0, TM modes
n=0, TE modes

@

where again the detailed expressions for P, P, and P,
[11] are not given for the sake of brevity. It is, however,
mentioned here that P, and P, are different for the three
cases of hybrid, TM, and TE modes with ¢ =0 for TM
modes, and b; = bf =0 for TE modes.

For the special case of an on-axis dipole (p,=0), it can
be verified that all terms in the field and power expres-
sions corresponding to |n|>1 are zero. Hence, in the
radiation fields, radiated power and radiation pattern
expressions, only terms corresponding to n=0 with J, and
|n|=1 with J, and J,, are present in the infinite series (for
radiation pattern m=0,1 too). Moreover, an on-axis di-
pole does not excite hybrid modes with azimuthal number
greater than 1. It should be noted that at p,=0, af =af =
a$ = b§ =0. Hence, the axial component J, gives rise to the
circularly symmetric TM modes, while the transverse
components J, and J, produce the hybrid dipolar modes
(In|=1). In other words, an on-axis and axially oriented
dipole excites TM,,, modes only. Further, the radiation
pattern of this dipole does not vary with ¢ (n=m=0) and
is symmetric about # =7 /2 plane. On the other hand, an
on-axis transverse dipole excites HE,  and EH,, modes
only and the corresponding radiation pattern is symmetric
about §=7/2 with a period of = in ¢.

(laz2+]at?+]a? ),
PO(PI‘Pz)‘ (|a§]2+]a8|2).
(1881,

1V. DipoLE IN THE CLADDING REGION

When the dipole is in the cladding region, p,>p,, the
fields and the power expressions may be deduced from the
existing equations by making appropriate changes. Since
these expressions are quite messy, no attempt is made here
to present them in details although details are available
[11]. The principal terms in the analysis a,,, b, a,5, b,
Ay, a,, and b, have to be adjusted. The expressions for S,
R,, S, and R, can be obtained from those in (10), where
Y, should be replaced by H", ¢, by ¢,, k; by k,, v, by
v, =kypg,and Ty by T,/j=ky( pp)'/?/4. All other variables
such as A,,4,,B,,B,n,m»A(B), etc., are the same as
before. The radiation fields, radiated power, and radiation
pattern may be obtained from (14), (15a), and (15b),
respectively, provided that g,, is substituted by a,,+ R,
and b,, by b,,+ S, in them. The results for this case may
be simplified, in a manner similar to the case p,<p,;, by
decomposing a,,+ R, and b,,+ S, into three parts involv-
ing J,, J,, and J,,. The derivation of the simplified results
is quite straightforward.

The surface-wave fields are obtained from (17) and
(18), and the total surface wave power from (21) provided
that the changed expressions 4, Ay, and P, for p,>p, are
used in them.
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V. SCATTERING DUE TO A LOCALIZED
INHOMOGENEITY

There has been considerable interest in reducing the
attenuation caused by absorption and scattering losses in
a cladded fiber. Here, we shall study scattering losses due
to the presence of minute inhomogeneities or metallic
impurities in the glass. When light is guided inside a fiber,
these scattering centers cause losses by radiation and
mode conversion.

We shall now apply the analyses developed in the
previous sections to the scattering problem. It is assumed
that the scatterer is small compared with the incident
wavelength and the size of the fiber, conditions that are
usually met in practice [13]. In what follows, scattering
due to an inhomogeneity of volume Av and permittivity
difference Ae=ejAe, is studied. The inhomogeneity is
assumed to be located at p, and ¢, in the z=0 plane.
Since the inhomogeneity is a small perturbation in the
permittivity of the dielectric material and occupies a small
volume Av, the fields of the incident mode are only
slightly perturbed. Thus, the Maxwell’s equation in Av
can be written as

VxH= —jkoe,iﬁ+.f,

i=lor2 (22a)

where

J=—jkohe, E=~—jkoAe Avd(B—Bo) E'.  (22b)
E' is the incident electric field with components E;=
g,(p)cos n¢, Ej=q,(p)sin n¢ and E/=g,(p)cos no, and
Ae,=¢,—¢,; where ¢,=c¢,, if the inhomogeneity is in the
core and €, =¢,, if it is in the cladding. ¢(p) is a function
of p only. The normalized radiated power can be ex-
pressed as P,=P,/(A¢,AT)’P,, where P; is the incident
modal power given by (20b) in which E and H are
substituted by those of the incident mode, AG=Av/p] is
the normalized volume of the inhomogeneity and P, is
obtained from (16). Similarly, the normalized surface-
wave power scattered into a particular mode is given by
P, =P, /(A¢AD)’P, where P, is obtained from (21).
Although the analyses developed in this paper are
sufficiently general to enable us to study radiation and
mode conversion from any arbitrary incident mode into
any scattered mode, we shall, for the simplicity of pre-
sentation and illustration, only concentrate on the case of
the fiber operating in the dominant HE,; mode and power
scattered into several lower order modes.

The variation of the normalized radiated power with
frequency for several values of p,/p, is shown in Fig. 4.
The fiber has relative permittivities €,=2.341 and ¢,=
2.250 and permeabilities all equal to unity. The incident
mode is taken to be HE,, and the angular position of the
inhomogeneity zero. The behavior of the radiated power is
largely determined by the variation in the incident field
strength. Thus as frequency increases the power for p,/p,
<1 increases, whereas for p,/p,>1 it decreases after
reaching a maximum. This is due to the fact that as the
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Fig. 4. Normalized radiated power P, versus normalized frequency V.

frequency increases, the incident surface-wave fields and
hence power become more and more confined to the core,
but decay exponentially in the outer cladding region.
Next, we examine the radiation patterns at V'=2.0. As
mentioned earlier, when all three components of the cur-
rent density are present, there is no symmetry in the
pattern, thus # and ¢ should be varied in full ranges of 0°
to 180° and 0° to 360°, respectively. However, if J,=0 or
J,=J,=0, it can be verified that the radiation patterns
become symmetric about #=90°. A large variety of
patterns may be produced for various values of p, and ¢,.
Here, we confine ourselves to an example in which all
components of the current are present. Let us choose
¢=30° and py/p,=0.5 and let P(¢,0) denote the radia-
tion pattern normalized to unity. Figs. 5(a), (b), (¢), and
(d) illustrate the patterns in ¢=0°, 90°, 180°, and 270°
planes, respectively, while Fig. 5(e¢) shows the pattern in
0=90° plane with ¢ varying from 0° to 360°. Excellent
symmetry is observed about §=90° in all patterns in
¢=const. planes. This is explained by the fact that the
axial component of the induced current is much smaller
than the transverse ones (J,/J,=0.06 and J,/J,=0.11).
On the other hand, since J, has a nonzero value, there is a
slight but still visible asymmetry in these patterns. All
patterns have nulls at § =0° and #=180° and a number of
peaks. P(¢,90°), as expected, shows no symmetry at all.
Figs. 6 and 7 show the variation of the normalized
scattered power for several lower order modes versus
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Fig. 5. Radiation patterns P(¢,0) at ¥'=2.0, p,/p,;=0.5 and ¢,=30°. (a) P(0°,8), (b) P(90°,0), (c) P(180°,6),
(d) P(270°,8), (¢) P($,90°).

frequency. Fig. 6(a) illustrates the variation of power for
the scattered HE,; mode. Again, for p,/p <1, the power
increases with frequency, whereas for p,/p,>1, it de-
creases rapidly after reaching a maximum. This can be
explained by the same reason advanced for the radiated
power. Variations of power for the scattered HE,, and
EH,; modes are shown in Figs. 6(b), (¢} and for the TM,,
HE,; and HE;; modes in Figs. 7(a), (b), (c), respectively.
Their general behavior is similar to the HE,;; mode. How-
ever, for p,/p,=0.5, the HE,, mode exhibits a peculiar
behavior. After an initial increase, its power drops to
—30.1 dB at V=17, and then rises to —0.38 dB at V'=10.
This drop in power is caused by the fact that the field
strength of this mode for certain values of py, ¢o, and V
becomes very small. This effect is much more pronounced
in Fig. 8 which shows variations of surface-wave powers
with py/p, at V=5 It can be seen in Figs. 6, 7, and 8 that

at po/p, =0 the HE,; and HE,, modes are excited much
more strongly than the EH,, mode, and the HE,,, HE;,,
and TM,, modes whose azimuthal numbers differ from
one are not excited at all. The curves for the HE,, and
TM,, modes completely overlap due to their degeneracy.

It should be emphasized that not only does the
scattered power depend on p,, but also on ¢, For fibers
with €,2=¢,, the axial component of the incident electric
field is much smaller than the transverse ones which are in
turn nearly equal; i.e., 7.(0)<q,(p)=~q,(p). Hence, the
power scattered into hybrid modes and the radiated
power vary slightly with ¢,. The power of TM modes
depend on E! and E; only, hence for angular positions
other than zero degree, the power of the TM,; mode is
lower than that of the HE,, mode and for the special case
of ¢,=90° it ceases to be excited, while the TEy, mode is
excited maximally.
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Comparisons were also made with the numerical results
for the total radiated power calculated from the expres-
sion based on the infinite medium approximation given by
P=(7/3) o/ €)"/*(Av|J| /X% A being the wavelength.
Computations were carried out for the cases py/p;=0.0,
0.5, 1.0, and 1.2 while V is varied from 0.7 to 10. In all
cases, the results of the present exact analysis are very
close to those of the infinite medium approximation. This
clearly establishes the accuracy of the infinite medium
approximation when the dielectric difference between the
core and the infinite cladding is small. However, when the
dielectric difference is not small, the infinite medium
approximation is no longer valid. Further, the exact analy-
sis vields radiation patterns which are markedly different
from the doughnut shape patterns predicted in the infinite
medium approximation. The results for the guided wave
power are identical to those obtained using the Lorentz
reciprocity theorem, hence comparisons of the computed
guided modal powers are unnecessary.

VI. CONCLUSIONS

A rigorous Green’s function formulation for the prob-
lem of an arbitrarily oriented and off-axis point electric
dipole in a two-layer cylindrical dielectric waveguide has
been carried out, and permits the corresponding field
solutions for both the radiation and guided modes to be
obtained. The practical significance of these solutions is
demonstrated through the immediate application of these
solutions to the problem of radiation and mode conver-
sion due to an arbitrarily located and off-axis inhomo-
geneity in a step-index optical fiber waveguide. So far as
the total radiated power is concerned, the results in the
infinite-medium approximation are sufficiently good, pro-
vided that the dielectric difference between the core and
the cladding is sufficiently small. Nevertheless, the
Green’s function formulation of the present paper leads to
exact results, against which the accuracy of the infinite-
medium approximation can be checked in cases where the
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Fig. 8. Normalized scattered surface-wave modal power versus p,/p,
for the HE ;, HE,,, EH ,, HE,,, and TM,, modes at V"'=5.

dielectric difference is not necessarily small. The results
for the guided modal power are identical to those ob-
tained using the Lorentz reciprocity theorem. However,
the spatial distribution of scattered light intensity, or
radiation pattern, calculated here differs markedly from
that obtained in the infinite-medium approximation,
which does not predict multiple peaks. These radiation
patterns provide the possibility of being checked experi-
mentally.

The method of analysis is generally applicable to multi-
layer cylindrical dielectric structures. We have already
extended the analysis to such three-layer structures as the
cladded fiber, the dielectric tube and the W-type fiber.
The results will be represented later. It also goes without
saying that the present analysis can be applied to similar
structures used in millimeter wave communications.
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