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Scattering from an Arbitrarily Located
Off-Axis Inhomogeneity in a

Step-Index Optical Fiber

AHMAD SAFAAI-JAZI AND GAR LAM YIP, SENIOR MEMBER, IEEE

Abstract-h exact analysis using the Green’s function forrnufation of

an arbitrarily oriented off-axis dipole radiating into a dielectric rod wave

guide k carrfed out. Tfre method of analysis involves expressing the fields

and the current source in a Fourier integraf in the z-direction and a

Fourier aerfea in the +direetion in a cyfindricaf coordinate system (p,+z).

The practfcaf significance of this anafysis, in particnfar with regard to its

aPP1i~tfoos to ~ problem of scattering from an arbitmrfty located

fnhomogeneity in a step-index opticaf fiber, is presented.

I. INTRODUCTION

D IELECTRIC optical waveguides are receiving ever

increasing attention recently. Although much effort

has been devoted to further developing the optical fiber

theory in recent years, there still remain certain problems

which deserve more detailed studies, One problem of

considerable importance is the excitation of guided modes

and radiation by infinitesimal dipole sources in cylindri-

cally stratified dielectric waveguides. A rigorous mathe-

matical treatment of the problem necessitates solving an
inhomogeneous wave equation.

A comprehensive treatment of excitation problems in-

volving point and line sources in the presence of dielectric
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slab waveguides can be found in [1] and [2]. A similar

problem in the case of cylindrical dielectric waveguides

involves a much greater degree of mathematical complex-

ity, and, except for certain special cases, a general solution

to the excitation problem has not been available so far.

Duncan [3] and Brown and Stachera [4] have studied the

excitation of the TMO1 mode on a dielectric rod by a

magnetic current ring, while Yip [5] investigated the ex-

citation of the HEI ~ mode by a transversely oriented

infinitesimal dipole on the axis of a rod.

The treatment of an arbitrarily oriented off-axis dipole

is somewhat complicated, especially when the radiation

fields are to be determined. Fortunately, the surface-wave

fields can be evaluated by employing the Lorentz re-

ciprocity theorem involving the use of the orthogonality

relations in the modal fields without solving the entire

excitation problem. The analysis was first carried out by

Goubau [6] and is also outlined in [7]. This methocl has
been used to study the mode conversion due to scattering

by localized inhomogeneities in optical fibers [8] and [9].

This method, while successful in handling the guided

modes, does not yield any information about the radii~tion

fields which are also excited by a scatterer. For wave-

guides with small dielectric difference between the core

and the cladding, the radiation loss due to localized im-

purities can be approximated by the power radiated from

an equivalent dipole into an

medium with a permittivity equal
infinite homogeneous

to that of the medium
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Fig. 1, Geometry of the problem. (a) The dielectric rod and the point
dipole. (b) Current components in tbe dipole.

surrounding the dipole [9]. But this approximation cannot

take into consideration the boundary between the core

and the cladding, Moreover, the calculated power be-

comes less and less accurate as the dielectric difference

between the core and the cladding increases.

The aim of this paper is to present a rigorous Green’s

function analysis of an off-axis and arbitrarily oriented

dipole in a two-layer cylindrical dielectric waveguide. The

treatment allows both the radiation fields and guided

modes to be examined. The method of analysis involves a

Fourier transform technique in conjunction with a coordi-

nate transformation and the application of the Graf’s

formula [10], Solutions for the far zone radiation fields

and surface-wave fields for all modes and the correspond-

ing powers are obtained. These solutions are then used to

study, in detail, radiation and mode conversion losses due

to scattering from a discrete and randomly situated

scatterer in a dielectric-rod optical waveguide in which the

dominant HEI ~ mode propagates.

II. FORMULATION OF THE PROBLEM

Consider a cylindrical dielectric waveguide composed

of a core with a radius p, and an infinite cladding as

illustrated in Fig. 1(a). The core and cladding are char-

acterized by permittivities ●1= ●oe,l and 62= ~oc,2 and

permeabilities pl = p. p,, and p2 = POp72, respectively. A

cylindrical coordinate system (p, +, z) with the z-axis

coinciding with the axis of the core is chosen. A point

electric dipole with an arbitrary orientation is placed at

(PO,I+O,ZO). The time variation iS assumed to be Of the form
exp( –jtit) which will be omitted throughout the analysis.

Without loss of generality, Z. is set to zero. The current

density in the dipole is expressed as a three-dimensional

delta function given by

3,=(Jpfio++,$0+Jz~o)NF - 60) (la)

where

and to, to, and 20 are unit vectors at Po, O., and Zo, along

the radial, azimuthal, and axial directi~ns, respectively, as

indicated in Fig. 1 (b). Decomposing J, along some arbi-

Y
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P
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Fig, 2, Transformation of coordinates in the z = O plane.

trary directions p and ~ yields

~1={ [Jp COS(O– +.)+J+ sin(+ – +0)]P+ [J+COS(@–@o)

– J, sin(o– @o)]$+JzE} 8(6–60). (2)

Let us assume, for the time being, that PO< PI; i.e., the

dipole is in the core region. The wave equations can be

written as

[1{
(v’+ %/4,%,)z = -‘M

E –j(ko P,17+ v Iwco%),

()<p<p, (3a)

(3b)

where l?= (co)lj2~l, ~ = ( po)lt2~l, and ~= ( po)112J1 are

the normalized fields and current density. The case PO>

PI, that is when the dipole is in the cladding region, will be

discussed later. The technique used for solving the inho-

mogeneous wave (3a) involves the following steps: 1) a

coordinate transformation in the z = O plane such that the

new origin is at (po, O., O) and the new x-axis; i.e., x’-axis

makes an angle @owith the old x-axis as shown in Fig. 2.

2) transformation of the fields and the current density by

means of a Fourier transform integral from the z domain

into the ~ domain, ~= ~/k. being the normalized axial

propagation constant.

Following step 1), the new transverse coordinates in

terms of the old ones are given by

P’= [P2+P; –2PPocos(&+o)] “2

The current density ~ in the new coordinate system be-

comes

.7=( ~o)’”[ (JpCOS+’ + J+ sin#)@’ + (J+COSI$’– J, Sin@’)&

+ JZ2] 8(p’)t3(z)/2Tp’. (5)

It should be noted that (3a) and (3 b), as they stand, are

valid in the new coordinate system too. By means of a
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Fourier transform integral the fields and the current den-

sity components can be expressed in the following form:

F(p’, ~’, ~) = ~ ~ f(p’, +’, z)exp( –jko ~z) dz. (6)
—’x

Using (5) and (6) in (3a), the following wave equations for

the transformed axial components of the fields are ob-

tained

(V:+ k:)

!1

Hzl(p’, +’,@

~zl(P’>@’> P)

I
__xWO)”2

477
.

{
(PO)”2 -

(7)

where k:= k~( p,le,l —~2). The corresponding equations

for H=z(p’, o’, ~) and kz2(p’, @’,~), the axial components in

the cladding region, are obtained from (7) by setting the

right hand side expressions to zero and replacing the

subscript 1 by 2 in all relevant terms, The particular

solutions to the inhomogeneous equations in (7) can be

written

H;,(P’,+’,B)= ~om=q_, (+)

“(J, -~vz.J@) Y~(k,p’)exp(jm4J) (8a)

J%(P’>#, @ = o
[

T – (Jzkl/kOc,J Yo(klp’)

+ ~=;_, (m’@/%)

1.(J, -jnd,). Ym(klp’)exp(jmj’) (8b)

where To =jkl( po)l\2/4 and .J~ and Y~ are the Bessel

functions of the first and second kinds, respectively. It is
now appropriate to write these solutions in terms of the

old coordinates p and ~. In doing so, we make use of the

Graf’s formula [10] expressed as

exp(jv@l)Z,(klp’) = S z.+ .(klp)J.(klpo)exp(~~Q)
~=—~

(9)

where Z.= J., Yn, H;’), or H~2) and p, po, and p’ [ = (p*+

P; – 2PP0 cos W]’* with IPI> IPol] form a triangle with Q=
@– #o as seen in Fig. 2. Hence, with the help of (9) and
taking into account the solutions to the homogeneous

equations in (7), the following results for the complete

solutions are obtained.

I

EZ,(P,4,B)= i [( R.+ QJn(~lP)]~n
~..~

H=l(p, @= ~ [($+ bnl)J~(klp)]F~’
~=—*

O<p<po, (lOa)

where k2 = ko( p,2~,2– ~) 1/2 and F.= exp[jn(~ – I#Jo)]. In

(10), the coefficients Rn, Sn,R~, S; are associated with solu-

tions to the inhomogeneous equations, whereas the un-

known coefficients a.,, b.l, a~2, and bn2 can be determined

by imposing the boundary conditions at the core–clad-

ding interface. For brevity, detailed expressions for these

coefficients are not given here, but can be found in [11].

III. EVALUATION OF ACTUAL FIELDS

The actual field components are obtained by Fourier

transforming the fields in the ~ domain according to

where f represents a component of the electric or magnetic

field in the z_domain and F is the corresponding compo-

nent in the ~ domain. The evaluation of the integral in

(11) is performed by means of a contour integration. In

doing so, the analyticity of the integrands involved must

be first investigated. In other words, the singularities of

the integrands, namely poles and branch points should be

determined. An examination of field coefficients in (10)

reveals that the poles are the real roots of the characteris-

tic equation A(~) = O. To identify the branch points, let us
first consider the variable k2 which appears in the argu-

ment of the Hankel function. kz is clearly multivalued in

the neighborhood of ~= ~ ~,, where ~, = ( P,2.E,2)1J2.More-

over, the series expansion of the Hankel function has a

logarithmic term, and is thus singular at k2 = O. ~onse-

quently, ~= *~, are branch points from which the cuts

are taken. The possibility of branch points at ~=

&( AI E,,)*12 may be questioned because of the presence of

the multivalued variable kl in the arguments of the Bessel

function Jn and Y. and the logarithmic singularity in-

herent in Y.. It can be proved [11] that if kl is replaced by

lcl. exp(jr), the integrands remain unchanged. Further,
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their series expansions are free from any logarithmic sin-

gularity. Hence, ~= k ( p,lc,l)l/2 are not branch points.

Then, the contour of integration, as shown in Fig. 3, is so

constructed that the singularities are avoided. By the

residue theorem

~_~=-~c,-~C2+2ti~ Residues. (12)

In (12), the integral along Cl vanishes as the radius of Cl

approaches infinity. The integral along C2, the branch cut,

contributes to the radiation fields, while the sum of the

residues which corresponds to the contribution of the

poles accounts for the surface-wave fields.

A. Radiation Fields

The radiation fields are obtained by evaluating the

branch cut integral in (12). The exact evaluation of this

integral is a formidable task. In the far zone where p and z

are sufficiently large, however, an asymptotic evaluation

of the integral is possible by means of a saddle point

method of integration [1] and [3], To facilitate the asymp-

totic evaluation of the branch cut integral, it is desirable

to introduce the transformation ~= ~, cos ~. It is further

convenient to utilize the spherical coordinates (r, O,0)

where O is measured from the z-axis so that p = r sin O and

z = r cos (?. Applying the above mentioned transformation,

using the large argument approximation of the Hankel

function in (1OC) and (12), and deforming the contour C,

in the ~ plane which is transformed from Cz in the ~

plane, into a steepest descent path passing through the

saddle point at ~ =0, one obtains,

ew (-i~o/+ )
.exp[jn (41-410-w/2 )]. ~r

(13)

E8(r, $, e) = ( p,2/Er2) %I+(r,+,e) (14a)

Ho(r,@,e) = – (@pr2) 1i2.E@#@. (14b)

In (13), an2(0) and b.2(0) are obtained from anz and bn2 in

(10) replacing ~ by ~.cos(l.

The radiation power is determined by integrating the

real part of one-half of the radial component of the

complex Poynting vector over a sphere of an arbitrarily

large radius,

P,= 1 ~2”~”P(~,@,o)~2sin@d@d8 (15a)
2( po#2 o

where

P(r, @,O)= Re[EO(r, @,O) H~(r,@, O)

–E@(r, @,0) Hj(r,@,8)].

Substituting for EO, HO, E+, and H+ from (13)

(15b)

and (14),
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Fig. 3. Contour of integration in the complex ~ plane.

the radiated power is obtained, after some simplifications,

as

where

an= To(a~ + a: + af)

bn = TO(b; + b: + b$’) (16b)

. .
b K=l/2an and bn are factors contained m an1,bn1,an2, ~2, ~

for n = O, K.= ~ for n >0, r.= AoTO/H~lJ(w), ~=

– 2/[m2Jn(x)A(l?)], x = klpl, and w= k2p1. The detailed
expressions for the terms in ( 16b) can again be found in

[1 1]. The infinite series in (16a) is absolutely convergent,

since the ratio of the (n+ l)th term to the nth one goes to

zero as n approaches infinity.
The radiation pattern may be obtained from lF’(r,@, 0)1,

given by (15b). In general, when all current components

J=, JP, and Jq are present and p.> O, there is no symmetry

in the radiation pattern. For special cases such as an

on-axis dipole (pO= O), to be discussed later, a great deal

of simplification occurs in both radiated power and radia-

tion pattern.

B. Surface-Wave Fields

For propagation in the positive z-direction, the surface-

wave fields for a particular mode having an azimuthal

number n are obtained by evaluating the residues at the

pole corresponding to the mode concerned. Hence, from

(10) and with the help of (11) and (12), the following

results are obtained. For n >1

IEZl,n(P>4, Z)=~nJn(~lP)~n
O<p<pl (17a)

~ZI,.(P,O>Z) =~~nQIJn(kP)~n’

{

EZ2,.(P>4Z) = ~nQ2Mlk21P)~n
p>pl (17b)

~z2,n(PtAz) =~Z~3&(lk21P)~n’
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and for n = O

[

+Z1,O(P,%Z) = ~oJo(~lP)~o (18)

*Z2,0(P,AZ) =~oQ2~o(l~21P)~o

where

{

if A(F)= B1 = 6,1?11– 6,2?72=0, TM modes
#z= :’ -

z> if A(B )=A2= P,lql – p,2q2=0, TE modes

In (17) and (18) for n=O, tl, <2,. . .

Xn = -j2kodn/[7rx%I:(x)A( p.)]

~~ = exp[jn(+ – @o)=jko ~.z ]

A(~.)=-&(j)

F= 6“

nl=J;(~)/~Jn(~)

‘q2= H;(l)(w)/ WH:l)( w)

~1 =B1/~l, fdz=~n(x)/K.(l~l) and ~3=aln2

A,= B2=np(l/x2–l/w2). (19)

For TE modes, A–o_ is given by A–o = 2kobo/

[nx2.1~(x)A’( PO)]. Since & >~r for guided modes, kz in

(17) and (18) has been replaced by jkz.

At a given frequency, only a finite number of modes are

excited. These are the modes whose cutoff frequencies are

lower than the operating frequency. The dominant HEII

mode is usually the first mode to be excited, because it

has a zero cutoff frequency. Further, as long as the

normalized frequency, defined as V= kopl(e,l – C,2)1’2, is

less than 2,405, the HEI, mode is the only surface-wave

mode present except for an axially oriented on-axis dipole

which excites the circularly symmetric modes only. For

V >2.405, the HE21, TMOI, and TEO1 modes also begin to

be excited. The number of excitable modes is determined

by the cutoff conditions and the operating frequency. A

detailed analysis of the cutoff conditions for a dielectric

rod is given by Marcuse [12].

The total power carried by a guided mode is the sum of

the powers in the positive and the negative z directions. It
should be noted that the two powers are not, in general,

equal.

P,=lPs(Bn)l+ IPs(– Fn)l (20a)

where

q/q = 1
2( poto)

,,2JJRe[~(P>+>z) xi*(P,@,z)].2ds.

(20b)

The integration is performed over the entire z = O plane.

Substituting (17) and (18) in (20), the total surface-wave

power is obtained as

P3 =

[

(la~12+ la~l’+ la~l’), n> 1, hybrid modes

PO(P, – P2)” (la:/2+ la~lz). n = O, TM modes

(lb$1217 n = O, TE modes

(21)

where again the detailed expressions for Po, P], and 1’2

[11] are not given for the sake of brevity. It is, however,

mentioned here that PI and P2 are different for the three

cases of hybrid, TM, and TE modes with a$ = O for TM

modes, and b:= b$ = O for TE modes,

For the special case of an on-axis dipole (p. = O), it can

be verified that all terms in the field and power expres-

sions corresponding to In I >1 are zero. Hence, in the

radiation fields, radiated power and radiation pattern

expressions, only terms corresponding to n = O with J= and

Inl = 1 with J, and J+ are present in the infinite series (for

radiation pattern m = O, 1 too). Moreover, an on-axis di-

pole does not excite hybrid modes with azimuthal number

greater than 1. It should be noted that at P.= O, af = a~ =

a$ = b$ = O. Hence, the axial component J= gives rise to the

circularly symmetric TM modes, while the transverse

components JP and J@ produce the hybrid dipolar modes

(Inl = 1). In other words, an on-axis and axially oriented

dipole excites TMo~ modes only. Further, the radiation

pattern of this dipole does not vary with@ (n= m = O) and

is symmetric about O= 7r/2 plane. On the other hand, an

on-axis transverse dipole excites HEl~ and EHl~ modes

only and the corresponding radiation pattern is symmetric

about Q= w/2 with a period of ~ in @

IV. DIPOLE IN THE CLADDING REGION

When the dipole is in the cladding region, P.> PI, the

fields and the power expressions may be deduced from the

existing equations by making appropriate changes. Since

these expressions are quite messy, no attempt is made here

to present them in details although details are available

[11]. The principal terms in the analysis a.,, b.,, a.z, b.,,

Ao, a~, and b. have to be adjusted. The expressions for S.,

R., S;, and R; can be obtained from those in (10), where
Y. should be replaced by H~l), C,l by C,2, kl by k2, VI by

V2= k2po,and To by To/j= k2( 1.Jo)l/2/4. All other variables

such as A1,A2,Bl,Bz,7113~z9 A(~), etc., are the same as
before. The radiation fields, radiated power, and radiation

pattern may be obtained from (14), (15a), and (15b),

respectively, provided that a.2 is substituted by a.2 + R;

and bn2 by b.2 + S; in them. The results for this case may

be simplified, in a manner similar to the case P.< p,, by

decomposing an2+ R; and bn2+ S; into three parts involv-

ing J=, JP, and J+. The derivation of the simplified results
is quite straightforward.

The surface-wave fields are obtained from (17) and

(18), and the total surface wa~ p~wer from (21) provided

that the changed expressions An, Ao, and P. for PO> p, are

used in them.
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V. SCATTERING DUE TO A LOCALIZED

INHOMOGENEITY

There has been considerable interest in reducing the

attenuation caused by absorption and scattering losses in

a cladded fiber. Here, we shall study scattering losses due

to the presence of minute inhomogeneities or metallic

impurities in the glass. When light is guided inside a fiber,

these scattering centers cause losses by radiation and

mode conversion.

We shall now apply the analyses developed in the

previous sections to the scattering problem. It is assumed

that the scatterer is small compared with the incident

wavelength and the size of the fiber, conditions that are

usually met in practice [13]. In what follows, scattering

due to an inhomogeneity of volume Av and perrnittivity

difference Ae = eoAer is studied. The inhomogeneity is

assumed to be located at p. and +0 in the z = O plane.

Since the inhomogeneity is a small perturbation in the

permittivity of the dielectric material and occupies a small

volume Av, the fields of the incident mode are only

slightly perturbed. Thus, the Maxwell’s equation in Av

can be written as

Vxfi = – jkoc,i~+ z i=lor2 (22a)

where

~= – jkOAcr~~ – jkOAc,Av8(~ – ~O)~. (22b)

Ei is the incident electric field with components E;=

4P(p)cos n $, E:= qo(p)sin n@ and E:= qz(p)cos n O, and
A%= ●, – qi where C,i= ●,l if the inhomogeneity is in the

core and C,i= C,z if it is in the cladding. q(p) is a function

of p only. The normalized radiated power can be ex-

pressed as ~,= Pr/(Ac,A6)2Pi, where Pi i% the in~dent

modal power given by (20b) in which E and H are

substituted by those of the incident mode, AZ= Av/p~ is

the normalized volume of the inhomogeneity and P, is

obtained from (16), Similarly, the normalized surface-

~ave power scattered into a particular mode is given by

P,= P,/(A~7A~2Pi, where p, is obtained from (21).

Although the analyses developed in this paper are

sufficiently general to enable us to study radiation and

mode conversion from any arbitrary incident mode into

any scattered mode, we shall, for the simplicity of pre-

sentation and illustration, only concentrate on the case of

the fiber operating in the dominant HE I, mode and power

scattered into several lower order modes.
The variation of the normalized radiated power with

frequency for several values of po/pl is shown in Fig. 4.

The fiber has relative permittivities c,, = 2.341 and 6,2=

2.250 and permeabilities all equal to unity. The incident

mode is taken to be HE, ~ and the angular position of the
inhomogeneit y zero. The behavior of the radiated power is

largely determined by the variation in the incident field

strength. Thus as frequency increases the power for pO/pl

<1 increases, whereas for pO/pl >1 it decreases after
reaching a maximum. This is due to the fact that as the

DO 2.00 U.oo 6.00 8.00
v

29

1.00

Fig. 4. Normalized radiated power ~, versus normalized frequency V.

frequency increases, the incident surface-wave fields and

hence power become more and more confined to the core,

but decay exponentially in the outer cladding region.

Next, we examine the radiation patterns at V= 2.0. As

mentioned earlier, when all three components of the cur-

rent density are present, there is no symmetry in the

pattern, thus O and@ should be varied in full ranges of 0°

to 180° and 0° to 360°, respectively. However, if J= = O or

JP = J+ = O, itcan be verified that the radiation patterns

become symmetric about O= 90°. A large variety of

patterns may be produced for various values of POand @m

Here, we confine ourselves to an example in which all

components of the current are present, Let us choose

@o= 30° and pO/pl = 0.5 and let F(o, 0) denote the radia-

tion pattern normalized to unity. Figs, 5(a), (b), (c), and

(d) illustrate the patterns in @=0°, 90°, 180°, and 270”

planes, respectively, while Fig. 5(e) shows the pattern in

O= 90° plane with o varying from 0° to 360°. Excellent

symmetry is observed about 9 = 90° in all patterns in

~= const. planes. This is explained by the fact that the

axial component of the induced current is much smaller

than the transverse ones (Jz/JP = 0.06 and J,/J@ = O.11).

On the other hand, since J= has a nonzero value, there is a
slight but still visible asymmetry in these patterns. All

patterns have nulls at/3 = 0° and O= 180° and a number of

peaks. F(+, 900), as expected, shows no symmetry at all.
Figs. 6 and 7 show the variation of the normalized

scattered power for several lower order modes versus
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(a)

Fig. 5.

180

@)

90

(c) (d)

90

18
p

o

270

(e)
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(d) ~(270°,19), (e) ~(+.,90°).

frequency. Fig. 6(a) illustrates the variation of power for

the scattered HE1 ~ mode. Again, for pO/p <1, the power

increases with frequency, whereas for pO/p ~>1, it de-

creases rapidly after reaching a maximum. This can be

explained by the same reason advanced for the radiated

power. Variations of power for the scattered HEIZ and

EHII modes are shown in Figs. 6(b), (c) and for the TMO1,
HE21 and HE31 modes in Figs. 7(a), (b), (c), respectively.

Their general behavior is similar to the HEI, mode. How-

ever, for po/pl = 0.5, the HE12 mode exhibits a peculiar

behavior. After an initial increase, its power drops to

– 30.1 dB at V= 7, and then rises to –0.38 dB at V= 10.

This drop in power is caused by the fact that the field
strength of this mode for certain values of PO, +., and V

becomes very small. This effect is much more pronounced

in Fig. 8 which shows variations of surface-wave powers

with po/pl at V= 5. It can be seen in Figs. 6, 7, and 8 that

at Po/P1 = O the HE I, and HEIZ modes are excited much
more strongly than the EHl ~ mode, and the HE21, HE31,

and TMO, modes whose azimuthal numbers cliff er from

one are not excited at all. The curves for the HE21 and

TMOI modes completely overlap due to their degeneracy.

It should be emphasized that not only does the

scattered power depend on po, but also on +.. For fibers

with C,lm C,2, the axial component of the incident electric

field is much smaller than the transverse ones which are in

turn nearly equal; i.e., q=(p) <<qP(p)= q+(p). Hence, the

power scattered into hybrid modes and the radiated

power vary slightly with @o. The power of TM modes
depend on El and E: only, hence for angular positions

other than zero degree, the power of the TMO1 mode is

lower than that of the HEZI mode and for the special case

of @o= 90° it ceases to be excited, while the TEOI mode is

excited maximally.
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Comparisons were also made with the numerical results

for the total radiated power calculated from the expres-

sion based on the infinite+medium approximation given by

P= (7r/3)( ~/61)112” (Aol.1 [/A)2; A being the wavelength.

Computations were carried out for the cases PO/Pi =0.0,

0.5, 1.0, and 1.2 while V is varied from 0.7 to 10. In all

cases, the results of the present exact analysis are very

close to those of the infinite medium approximation. This

clearly establishes the accuracy of the infinite medium

approximation when the dielectric difference between the

core and the infinite cladding is small. However, when the

dielectric difference is not small, the infinite medium

approximation is no longer valid, Further, the exact analy-

sis yields radiation patterns which are markedly different
from the doughnut shape patterns predicted in the infinite

medium approximation. The results for the guided wave

power are identical to those obtained using the Lorentz

reciprocity theorem, hence comparisons of the computed

guided modal powers are unnecessary.

VI. CONCLUSIONS

A rigorous Green’s function formulation for the prob-

lem of an arbitrarily oriented and off-axis point electric

dipole in a two-layer cylindrical dielectric waveguide has

been carried out, and permits the corresponding field

solutions for both the radiation and guided modes to be

obtained. The practical significance of these solutions is

demonstrated through the immediate application of these

solutions to the problem of radiation and mode conver-

sion due to an arbitrarily located and off-axis inhomo-

geneity in a step-index optical fiber waveguide. So far as

the total radiated power is concerned, the results in the

infinite-medium approximation are sufficiently good, pro-

vided that the dielectric difference between the core and

the cladding is sufficiently small. Nevertheless, the

Green’s function formulation of the present paper leads to

exact results, against which the accuracy of the infinite-

medium approximation can be checked in cases where the



32 IFEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MIT-28, NO. 1, JANUARY 1980

v= 5.(J \
: \
‘a. 00 0.30 0.60 1.20 :

Q/’P, 0“ ‘0
50

Fig. 8. Normalized scattered surface-wave modal power versus pO/pl
for the HE1l, HE12, EHII, H~l, and TMOI modes at V= 5.

dielectric difference is not necessarily small. The results

for the guided modal power are identical to those ob-

tained using the Lorentz reciprocity theorem. However,

the spatial distribution of scattered light intensity, or

radiation pattern, calculated here differs markedly from

that obtained in the infinite-medium approximation,

which does not predict multiple peaks. These radiation

patterns provide the possibility of being checked experi-

mentally.

The method of analysis is generally applicable to multi-

layer cylindrical dielectric structures. We have already

extended the analysis to such three-layer structures as the

cladded fiber, the dielectric tube and the W-type fiber.

The results will be represented later, It also goes without

saying that the present analysis can be applied to similar

structures used in millimeter wave communications.
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